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Abstract
Electrolaryngeal (EL) speech utilizes excitation 

signals generated by an electrolarynx instead of 
human vocal vibrations. In daily communication, EL 
speech is less natural and more difficult to under-
stand than natural (NL) speech due to mechanical 
vibration noise and fixed pitch. Different methods 
have been proposed to improve the quality and 
intelligibility of EL speech, but limited training data 
and atypical acoustic characteristics pose challeng-
es. Voice conversion (VC) is one popular meth-
od, and the task is called EL speech VC (ELVC). 
Sequence-to-sequence (seq2seq) modeling with 
pretraining strategies has been proposed for ELVC. 
However, seq2seq ELVC still faces the problem of 
incomplete and missing phonemes. Furthermore, 
although previous work has evaluated simulated EL 
(sEL) speech produced by healthy speakers using 
electrolarynxes, the effectiveness of seq2seq ELVC 
on patient EL (pEL) speech has not been studied. 
In this article, we propose three approaches to 
address the issues of ELVC implementation. First, 
we utilize sEL speech in the pretraining stage to 
close the gap between pEL speech and NL speech. 
Second, we adopt a speech encoder loss to solve 
the problem of incomplete and missing phonemes. 
Third, we introduce waveform similarity overlap-
and-add to augment pEL training speech. We con-
duct systematic experiments on pEL speech to 
evaluate our approaches. Ablation studies show 
that incorporating our approaches improves the 
converted speech in both objective and subjective 
evaluations compared to the baseline model.

Introduction
Speech is a fundamental communication method 
for human interaction in our daily life. According 
to the source-filter model [1], human speech is 
generated through two main stages: the airflow 
from the lungs forms an excitation signal (source) 
through the opening and closing of the vocal 
folds, and then passes through the vocal tract 
(filter) to determine the spectral structure of the 
output speech. The speech produced by healthy 
people through the above mechanism is called 

natural (NL) speech. However, patients who 
undergo total laryngectomy for pharyngeal malig-
nancies such as laryngeal cancer will lose the abil-
ity to generate excitation signals, resulting in a 
complete loss of the ability to speak. For these 
laryngectomees, an alternative method of gener-
ating excitation signals is to use an electrolarynx, 
which generates mechanical excitation signals. 
The speech produced by people using this device 
is called electrolaryngeal (EL) speech. EL speech is 
less understandable and natural than NL speech 
due to fixed pitch and mechanical vibration noise.

The goal of voice conversion (VC) is to convert 
one speech sound into another without chang-
ing the linguistic content. It has been applied to 
enhance EL speech to approximate the quality 
and intelligibility of NL speech [2–4]. This type of 
VC task is called EL speech VC (ELVC). Current 
ELVC methods [2–4] usually require the use of a 
parallel corpus of EL speech and NL speech pairs 
with the same linguistic content for modeling. 
ELVC systems typically include feature extraction 
and alignment, mapping function learning, and 
waveform reconstruction. Feature extraction 
and alignment are crucial for ELVC systems to 
accurately convert the attributes from the source 
to the target, especially for frame-based ELVC. 
Dynamic time warping (DTW) [5] is a well-known 
method for finding the best alignment path of two 
feature vector sequences based on distance mea-
sures (e.g., L2 distance) of source-target feature 
vector pairs. However, the atypical acoustic char-
acteristics of EL speech are very different from NL 
speech, resulting in incorrect feature extraction, 
making accurate feature alignment difficult. Mis-
matched source-target feature pairs will lead to 
incorrect mapping function learning, resulting in 
poor ELVC performance. Furthermore, compared 
to other VC tasks, the corpus of the ELVC task is 
relatively small due to the challenges of collecting 
EL speech corpora from patients.

To cope with the data scarcity problem, the 
authors of [6] used text-to-speech (TTS) to aug-
ment training data. By combining the generat-
ed data with the original data for pretraining, 
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the accuracy of automatic speech recognition 
(ASR) of the converted EL speech is effectively 
improved. However, for ELVC tasks, the main 
challenge in training EL-TTS is the requirement for 
certain quality standards for EL speech and the 
cost of additional training resources. Furthermore, 
the EL speech generated is far from ideal. Due to 
these shortcomings, the EL-TTS method may not 
be suitable for the Mandarin ELVC task in this arti-
cle on real patients.

To address these issues, we proposed align-
ment-free sequence-to-sequence (seq2seq) ELVC 
[7], which involves a pretraining strategy on a large-
scale NL speech corpus to alleviate the insufficient 
data problem of ELVC tasks. The seq2seq mech-
anism can learn feature mapping and alignment 
simultaneously, which can reduce errors caused by 
incorrect alignment. However, due to the architec-
ture of seq2seq modeling, the output often suffers 
from incomplete and missing phonemes, resulting 
in syllable errors in the converted speech. Further-
more, previous work has evaluated simulated EL 
(sEL) speech produced by healthy speakers using 
electrolarynxes, and the effectiveness of seq2seq 
ELVC on patient EL (pEL) speech has not been 
studied. To go one step further, we propose three 
techniques to improve seq2seq ELVC. The major 
contributions of this study include:
•	 We add an additional pretraining stage using sEL 

speech to the seq2seq ELVC task, alleviating the 
gap between pEL speech and NL speech.

•	 We use the speech encoder loss for ELVC model 
training to solve the problem of incomplete and 
missing phonemes in seq2seq modeling.

•	 We apply efficient speech rate-based data 
augmentation to pEL speech, which can alle-
viate the problem of insufficient data and 
improve the performance of ELVC systems.
The remainder of this article is organized 

as follows. We present the proposed model. 
We present the experimental setup and results, 
respectively. We provide some discussion. Finally, 
we conclude the article.

Proposed aApproach
Our ELVC model is developed on top of the 
voice transformer network (VTN) for the speak-
er VC task [8]. Figure 1 shows the overall train-
ing process. VTN pretraining includes decoder 
pretraining and encoder pretraining. Our elec-
trolaryngeal speech transformer network (ETN) 
pretraining includes decoder pretraining, encoder 
pretraining, and ELVC pretraining on sEL speech. 
Finally, the ELVC model is trained on pEL speech. 
L1 loss is used in all training stages.

Compared to the previous seq2seq ELVC 
model based on VTN [7], we integrate three new 
methods into the improved model. The first is to 
use sEL speech for pretraining, which can reduce 
the gap between pEL speech and NL speech in 
the ELVC task. The second is to use the speech 
encoder loss for ELVC model training, which 
can extend the advantages of a large-scale NL 
speech corpus to a very small amount of EL train-
ing speech, solve the problem of incomplete and 
missing phonemes in seq2seq modeling, and 
improve the intelligibility of the converted speech. 
The third is to use speech rate-based data aug-
mentation on pEL training speech. To reduce the 
mismatch between pEL training speech and NL 

training speech, we change the speech rate of 
pEL training speech to be closer to NL training 
speech, which can reduce the difficulty of aligning 
EL and NL feature sequences.

We describe these methods in detail below.

ETN: Electrolaryngeal speech transformer network
One of the focuses of this article is to explore 
how sEL speech can be leveraged to facilitate 
model training for pEL speech in ELVC. The main 
concept of VTN involves pretraining with a large 
amount of NL speech to obtain good speech gen-
eration for the decoder and speech feature dis-
entanglement for the encoder. Furthermore, after 
the encoder learns how to extract speech features 
from NL speech, we extend it by training a sEL-to-
NL VC model using a relatively large amount of 
sEL speech. This pretrained model is then utilized 
to train the pEL-to-NL VC model using a small 
amount of pEL speech. As illustrated in Fig. 1, 
compared with VTN, it becomes ETN after adding 
the third stage of sEL-to-NL pretraining.

There are two main benefits of using sEL-to-
NL pretraining. First, sEL speech and pEL speech 
are both challenging atypical speech. As each 
patient’s pathology differs, pEL speech exhibits 
variability, whereas sEL speech of healthy speak-
ers are relatively more consistent. Since sEL 
speech is closer to NL speech than pEL speech, 
sEL-to-NL is a relatively easier ELVC task to han-
dle than pEL-to-NL. By first training on a relatively 
simple task, the model acquires the ability to dis-
entangle EL speech, making it easier to achieve 
good conversion results in the subsequent rela-
tively challenging pEL-to-NL task. Second, more 
data are available for training the sEL-to-NL VC 
model. Given the general lack of ELVC training 
data, the advantage of more training data is obvi-
ous. In summary, using a larger amount of data 
in ELVC pretraining is expected to provide better 
model initialization and training outcomes for the 
pEL-to-NL VC task.

FIGURE 1. The upper part is the training flow of our ELVC model, which can be 
divided into decoder pretraining, encoder pretraining, ELVC pretraining on 
simulated EL speech, and ELVC training on patient EL speech. The lower part 
depicts the ELVC training loss. When combining the speech encoder loss to train 
the ELVC model, the converted EL speech and the target NL speech are respectively 
input into the encoder of an ASR model to obtain the corresponding latent 
representations, and the difference between the two representations is minimized 
together with the traditional reconstruction loss to further reduce the difference 
between the converted EL speech and the target NL speech.
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Fig. 1. The upper part is the training flow of our ELVC model, which can be divided into decoder pretraining, encoder pretraining, ELVC pretraining on
simulated EL speech, and ELVC training on patient EL speech. The lower part depicts the ELVC training loss. When combining the speech encoder loss to
train the ELVC model, the converted EL speech and the target NL speech are respectively input into the encoder of an ASR model to obtain the corresponding
latent representations, and the difference between the two representations is minimized together with the traditional reconstruction loss to further reduce the
difference between the converted EL speech and the target NL speech.

pEL training speech. Since pEL speech tends to be slower than
NL speech, we shortened the duration of pEL speech, starting
from the original duration (100%) and gradually reducing it by
5% each time until reaching 80% of the original duration. In
this way, each pEL speech utterance was augmented into five
versions (including the original version). The main advantage
of this approach is its rapid and simple implementation. Unlike
TTS-based data augmentation [6], which requires training
a TTS model and fine-tuning it on EL speech to produce
synthetic EL speech, this method requires less computational
resources and requires no training. Furthermore, the EL speech
produced by TTS-based methods may be significantly different
from the EL speech, and using WSOLA to appropriately
modify the duration will not cause this difference.

III. EXPERIMENTAL SETUP

A. Datasets

We adopted the TMHINT text set [10] as the script for
recording the sEL speech dataset. The TMHINT text set was
designed taking into account diverse and balanced Mandarin
phonemes. There are 320 sentences in total, and each sentence
has 10 Chinese characters. Seven healthy speakers (four males
and three females) participated in the recording process. All
audio files were recorded in a studio environment. The sEL
speech was recorded using a Nu-Vois III Digital electrolarynx.
Each speaker recorded sEL speech and NL speech separately
for each of the 320 sentences. Therefore, the sEL dataset is a

parallel ELVC corpus. The pEL speech dataset only contains
the pEL speech of two male patients, which were also recorded
based on the TMHINT sentences using a Nu-Vois III Digital
electrolarynx, with 320 pEL speech utterances per patient.
Unlike the sEL dataset, all pEL audio files were recorded in
the hospital’s treatment clinic room.

We used the TMSV dataset [11] to augment NL speech in
ELVC pretraining (see Figure 1). This dataset contains the NL
speech of 16 speakers, also recorded based on the TMHINT
sentences. We only used the speech utterances corresponding
to the first 240 TMHINT sentences in the sEL, pEL, and
TMSV datasets for ELVC pretraining and training. The speech
utterances corresponding to the next 40 sentences were used as
the development set, and the speech utterances corresponding
to the last 40 sentences were used as the test set.

Additionally, the COSPRO dataset [12] was used for VTN
pretraining (and the first two pretraining stages of ETN) and
vocoder training. It contains Taiwanese-accented Mandarin
read or spontaneous speech of 109 speakers, approximately
44.4 hours. The MATBN dataset [13] was used to train
the ASR model, which was used to evaluate the syllable
recognition error rate of the converted speech and provide
the speech encoder loss in ELVC training. It is a Taiwanese-
accented Mandarin broadcast news corpus consisting of 196
hours. A sampling rate of 16 kHz was used uniformly for all
corpora used.
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Speech Encoder Loss

We integrate the encoder of a pretrained ASR 
model into the ELVC training stage to provide the 
speech encoder loss. This allows the ELVC model 
to continuously benefit from the rich information 
of a large NL speech dataset when trained on a 
limited amount of EL speech. In addition, using 
the ASR model can also guide the ELVC model to 
retain phoneme information, thereby solving the 
problem of incomplete and missing phonemes and 
enhancing intelligibility. The concept is shown in 
the lower part of Fig. 1. The converted EL speech 
and the target NL speech are respectively input 
into the encoder of the ASR model to obtain the 
corresponding latent representations. The L1 loss 
between the two representations is minimized 
together with the traditional L1-based reconstruc-
tion loss to further reduce the difference between 
the converted EL speech and the target NL speech.

Data Augmentation
Limited pEL training speech is a significant chal-
lenge for pEL-to-NL VC tasks. To address this 
issue, we use a data augmentation method based 
on the waveform similarity overlap-and-add 
(WSOLA) algorithm [9] to increase the amount 
of pEL training speech. Since pEL speech tends 
to be slower than NL speech, we shortened the 
duration of pEL speech, starting from the orig-
inal duration (100%) and gradually reducing it 
by 5% each time until reaching 80% of the orig-
inal duration. In this way, each pEL speech utter-
ance was augmented into five versions (including 
the original version). The main advantage of this 
approach is its rapid and simple implementation. 
Unlike TTS-based data augmentation [6], which 
requires training a TTS model and fine-tuning it 
on EL speech to produce synthetic EL speech, 
this method requires less computational resourc-
es and requires no training. Furthermore, the EL 
speech produced by TTS-based methods may 
be significantly different from the EL speech, and 
using WSOLA to appropriately modify the dura-
tion will not cause this difference.

Experimental Setup

Datasets
We adopted the TMHINT text set [10] as the script 
for recording the sEL speech dataset. The TMHINT 
text set was designed taking into account diverse 
and balanced Mandarin phonemes. There are 320 
sentences in total, and each sentence has 10 Chi-
nese characters. Seven healthy speakers (four males 
and three females) participated in the recording 
process. All audio files were recorded in a studio 
environment. The sEL speech was recorded using 
a Nu-Vois III Digital electrolarynx. Each speaker 
recorded sEL speech and NL speech separately for 
each of the 320 sentences. Therefore, the sEL data-
set is a parallel ELVC corpus. The pEL speech dataset 
only contains the pEL speech of two male patients, 
which were also recorded based on the TMHINT 
sentences using a Nu-Vois III Digital electrolarynx, 
with 320 pEL speech utterances per patient. Unlike 
the sEL dataset, all pEL audio files were recorded in 
the hospital’s treatment clinic room.

We used the TMSV dataset [11] to augment 
NL speech in ELVC pretraining (Fig. 1). This data-

set contains the NL speech of 16 speakers, also 
recorded based on the TMHINT sentences. We 
only used the speech utterances corresponding to 
the first 240 TMHINT sentences in the sEL, pEL, 
and TMSV datasets for ELVC pretraining and train-
ing. The speech utterances corresponding to the 
next 40 sentences were used as the development 
set, and the speech utterances corresponding to 
the last 40 sentences were used as the test set. 

Additionally, the COSPRO dataset [12] was 
used for VTN pretraining (and the first two pre-
training stages of ETN) and vocoder training. It 
contains Taiwanese-accented Mandarin read or 
spontaneous speech of 109 speakers, approxi-
mately 44.4 hours. The MATBN dataset [13] was 
used to train the ASR model, which was used to 
evaluate the syllable recognition error rate of the 
converted speech and provide the speech encod-
er loss in ELVC training. It is a Taiwanese-accented 
Mandarin broadcast news corpus consisting of 
196 hours. A sampling rate of 16 kHz was used 
uniformly for all corpora used.

Training Settings
As shown in Fig. 1, in VTN pretraining, the COS-
PRO dataset was first used for decoder pretrain-
ing (training the TTS model consisting of EncT

TTS 
and DecT

TTS), and then used for encoder pretrain-
ing through self-reconstruction of audio input/
output (training the speech encoder EncT

TTS under 
the fixed decoder DecT

TTS). Note that we only used 
NL speech in VTN pretraining.

The first two stages of ETN pretraining are the 
same as VTN pretraining. We evaluated two set-
ings for the third pretraining stage of ETN (i.e., 
ELVC pretraining in Fig. 1). In the first setting, we 
selected two males and two females from the sEL 
dataset for ELVC pretraining (denoted as ETN: 
from 4 source sEL speakers to 4 target NL speak-
ers, for a total of 16 speaker pairs). In the second 
setting, we used the entire sEL dataset and the 
TMSV NL dataset for ELVC retraining (denoted as 
L-ETN: from 7 source sEL speakers to 23 target NL 
speakers, for a total of 161 speaker pairs).

For the ELVC task, we selected two male 
speakers as VC targets for the two male patients. 
In this work, we focused on training ELVC models 
in a one-to-one VC manner. We have two pEL 
speakers and two NL speakers, so four different 
ELVC models were developed. The reported 
experimental results are the average of the four 
ELVC models.

We implemented our system using the open-
source ESPnet toolkit [14]. Both ELVC and ASR 
models are based on the transformer encoder-de-
coder architecture with multi-head self-attention. 
The feature used is the 80-dimensional Mel-spectra. 
The window length is set to 1024, and the frame 
shift is 256. VTN pretraining follows the transform-
er.v1 configuration outlined in [14]. We adopted 
Parallel WaveGAN (PWG) as the vocoder.1

Evaluation Metrics
We evaluated the proposed model with both 
objective and subjective evaluation metrics.

The objective metrics include Mel-ceps-
trum distortion (MCD), F0 root mean square 
error (F0 RMSE), F0 correlation coefficient (F0 
CORR), and average absolute duration difference 
between the converted and target utterances 

he sEL speech was 
recorded using a 

Nu-Vois III Digital 
electrolarynx. Each 

speaker recorded 
sEL speech and NL 

speech separately for 
each of the 320 sen-

tences. 
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(DDUR), and ASR error rate. MCD is a widely 
used metric for assessing the spectral envelope 
distortion between paired speech signals in the 
Mel-frequency domain. To calculate the MCD 
values, we use the WORLD vocoder2 to extract 
40-dimensional Mel-cepstral coefficients with a 5 
ms frame shift, and then calculate the distortion 
for non-silent, time-aligned frame pairs. A small-
er F0 RMSE value and a larger F0 CORR value 
indicate more accurate F0 conversion. A smaller 
DDUR value indicates that the converted speech 
has a similar duration to the target speech. We 
used three ASR systems to perform speech recog-
nition evaluation on the converted speech, name-
ly Google ASR,3 Whisper,4 and our self-trained 
Mandarin syllable recognition system. Considering 
the characteristics of Mandarin, we provide two 
error rates: syllable error rate (SER) and character 
error rate (CER). SER was evaluated by our own 
Mandarin syllable recognition system. CER evalu-
ated by Google ASR and Whipser are denoted as 
G-CER and W-CER, respectively. The average SER, 
G-CER, and W-CER are 8.4%, 5.1%, and 2.6% 
for NL speech (NL07 and NL08), 88.5%, 95%, 
and 81% for sEL speech (sEL07 and sEL08), and 
91.5%, 99.3%, and 111.8% for pEL speech (pEL01 
and pEL02). It is clear that the error rates for the 
NL speech of two healthy speakers (NL07 and 
NL08) are low, while the error rates for the sim-
ulated EL speech of two healthy speakers (sEL07 
and sEL08) and the EL speech of two patients 
(pEL01 and pEL02) are very high, almost com-
pletely unrecognizable. Given the critical impor-
tance of intelligibility in ELVC tasks, our evaluation 
prioritizes the ASR error rate as the primary met-
ric, while also considering other metrics to ensure 
a comprehensive evaluation.

We conducted two listening tests. The first 
involves transcription and intelligibility assessment. 
Participants were required to complete two tasks: 
1. Listen to the speech and transcribe the speech 

content, similar to manual speech recognition; 
2. Listen to the speech and rate the mean opin-

ion score (MOS) for intelligibility on a five-
point scale, with 1 being the lowest and 5 
being the highest.

Even difficult-to-understand EL speech becomes 
easier to understand if listeners hear the corre-
sponding normal speech first. In order to avoid 
this bias, through a special design, the content 
of the test utterances (including normal and pEL 
utterances and pEL utterances processed by var-
ious ELVC models) presented to each listener is 
different. The second one is AB testing. In this 
test, participants were presented with the con-
version results of two different ELVC systems on 
each trial and were asked to choose the better 
one. Additionally, we used MOSA-Net+,5, a neu-
ral speech assessment model, to provide quality 
and intelligibility assessments for comparison with 

human listening tests. The quality score is also 
measured on a five-point scale, while the intelligi-
bility score ranges from 0 to 1.6 For both scores, a 
higher value indicates better performance.

Baseline Models
We compared our model with two baseline mod-
els: CDVAE [15] and the VTN-based seq2seq ELVC 
model [7]. CDVAE is a representative frame-based 
ELVC model combined with self-supervised learn-
ing (SSL) features. Our model is developed on top 
of the VTN-based seq2seq ELVC model by replac-
ing VTN pretraining with ETN pretraining and inte-
grating multiple methods for improvement.

Experimental Results
Through objective evaluation, we first examine 
the effect of ETN pretraining. Next, we evaluate 
the effectiveness of speech rate-based augmen-
tation of EL speech. Then, we show the results of 
incorporating the speech encoder loss into ELVC 
training. Finally, we provide ablation study results 
for all proposed methods. For subjective evalua-
tion, we provide the results of two sets of human 
listening tests and the evaluation results of the 
neural assessment model MOSA-Net+.

Pretraining Strategy
We first compare the effectiveness of different pre-
training strategies for pEL-to-NL ELVC. The results 
in Table 1 show that ETN using sEL-NL data for an 
additional third pretraining stage outperforms VTN 
using only NL speech, achieving lower MCD and 
lower error rates in all ASR systems. Compared 
to ETN, L-ETN further improves the performance 
by using more sEL-NL data in the third pretrain-
ing stage, resulting in lower MCD and lower 
error rates in two of the three ASR systems. The 
results of three different pretraining methods (i.e., 
VTN, ETN, and L-ETN) show a clear trend: as the 
amount of simulated EL speech in pretraining 
increases, the MCD and ASR error rates gradually 
decrease. This verifies the effectiveness of incor-
porating an appropriate amount of simulated EL 
speech into pretraining to bridge the gap between 
natural speech and patient EL speech.

Data Augmentation
Based on the results of the first experiment, the 
second experiment evaluates data augmenta-
tion of EL speech in the L-ETN pretraining set-
ting. From Table 2, we can see that, with limited 
pEL training speech, a simple speech rate-based 
data augmentation approach helps ELVC train-
ing, achieving lower MCD and lower error rates 
across all ASR systems. But this approach does 
not bring significant benefits when applied to aug-
ment sEL speech used in ELVC pretraining. The 
reason may be that the amount of sEL speech is 
relatively sufficient compared to pEL speech, and 

1 We followed the open-
source implementation at 
https://github.com/kan-
bayashi/ParallelWaveGAN.  
 
2 We adopted the Python 
wrapper for World Vocoder 
at https://github.com/Jere-
myCCHsu/Python-Wrapper-
for-World-Vocoder. 
 
3 We used Google Cloud 
Speech API at https://github.
com/Uberi/speech_recog-
nition. 
 
4 We adopted Whisper-large 
model at https://github.
com/openai/whisper. 
 
5 https://github.com/
dhimasryan/MOSA-Net-
Cross-Domain/tree/main/
MOSA_Net+. 
 
6 MOSA-Net+ is trained on 
the results of human listening 
tests in terms of the percent-
age of correctly recognized 
characters in an utterance, 
rather than the standard 
MOS score on a 5-point 
scale.

TABLE 1. Comparison of different pretraining strategies for ELVC models. VTN is the baseline without ELVC pre-
training, ETN indicates ELVC pretraining using the small sEL-NL dataset, and L-ETN indicates ELVC pretraining 
using the full sEL-NL dataset.

Pretraining MCD  F0 RMSE  F0 CORR  DDUR  SER (%)  G-CER (%)  W-CER (%) 

VTN
ETN

L-ETN

8.745
8.544
8.471

29.712
30.005
30.275

0.164
0.168
0.176

0.397
0.438
0.436

79.0
74.0
71.5

87.1
82.2
80.3

86.3
78.9
81.9

Even difficult-to-un-
derstand EL speech 
becomes easier to 
understand if lis-

teners hear the cor-
responding normal 

speech first. 
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adding too much homogeneous training data with 
this simple approach may lead to overfitting, neg-
atively affecting the effectiveness of ELVC model-
ing on patient EL speech. It can also be seen from 
Table 2 that using EL data augmentation simulta-
neously in ELVC pretraining and ELVC training will 
not further improve performance.

Speech Encoder Loss
The third experiment focuses on the impact of 
using the speech encoder loss in ELVC training in 
the L-ETN pretraining setting. As shown in the last 
two rows of Table 3, the additional use of speech 
encoder loss in ELVC training does reduce ASR 
error rates, although the MCD is not reduced. By 
aligning the latent representations of the target NL 
speech and the output of the ELVC model through 
the speech encoder, the ELVC model can better 
ensure the integrity of phonemes and the accuracy 
of intonation in the converted speech. The speech 
encoder used here is the encoder of the ASR 
model used to objectively evaluate the syllable 
error rate. The additional use of speech encoder 
loss in ELVC training not only reduces the SER, but 
also reduces the CER of Google ASR and Whisper 
ASR, neither of which participate in ELVC training. 
This further shows the effectiveness of additionally 
using the speech encoder loss in ELVC training.

Ablation Study
The results of the ablation study are shown in 
Table 3. The first row represents the baseline 
VTN-based seq2seq ELVC system. From the sec-
ond to the fourth row, we sequentially merge 
L-ETN pretraining, pEL data augmentation, and 
speech encoder loss, respectively. Comparing 

row 2 and row 1 shows that L-ETN outperforms 
VTN. Comparing row 3 and row 2 shows that 
pEL data augmentation is effective. Comparing 
row 4 and row 2 shows that additional use of the 
speech encoder loss helps improve performance. 
The ELVC model combining all the above meth-
ods achieves the lowest error rates (see the last 
row).  The results show that these methods not 
only improve performance independently, but 
also complement each other to create synergistic 
effects.

Subjective Evaluation
The first subjective evaluation involves transcrip-
tion and intelligibility assessment. Participants 
were required to complete two tasks:
1. Listen to the speech and transcribe the 

speech content;
2. Listen to the speech and rate the MOS for 

intelligibility on a five-point scale, with 1 being 
the lowest and 5 being the highest.

The first task asked participants to perform speech 
recognition, so CER was evaluated in the same 
way as ASR. There were 33 participants in this lis-
tening test. The audio files included pEL speech, 
NL speech, and pEL speech converted by CDVAE, 
VTN-based model, and our best model. The results 
are shown in the left part of Table 4. For the aver-
age listener, transcribing EL speech is a challenging 
task. This difficulty arises primarily from non-speech 
noise signals, which can severely impair compre-
hension. Compared with the 6.8% error rate of NL 
speech, the error rate of pEL speech is as as high 
as 95.0%, reflecting the extremely low intelligibili-
ty of pEL speech. Comparing three ELVC systems 
revealed a surprising result: CDVAE achieved an 

TABLE 2. Experimental results using EL data augmentation in different stages. Comparisons were made between no use, use in the ELVC pretrain-
ing stage, and use in the ELVC training stage.

EL data augmentation
MCD  F0 RMSE  F0 CORR  DDUR  SER (%)  G-CER (%)   W-CER (%) ELVC training 

(pEL)
ELVC pretraining 

(sEL)











8.471
8.549
8.377
8.861

30.275
30.061
30.146
30.121

0.176
0.146
0.194
0.133

0.436
0.434
0.442
0.385

71.5
71.9
67.1
72.3

80.3
79.8
74.9
82.1

81.9
85.6
81.3
85.1

TABLE 3. Ablation study results. DA denotes pEL data augmentation, VC denotes reconstruction loss, and SE denotes speech encoder loss.

Training loss DA Pretraining MCD  F0 RMSE  F0 CORR  DDUR  SER (%)  G-CER (%)  W-CER (%) 

VC
VC
VC

VC+SE
VC+SE







VTN
L-ETN
L-ETN
L-ETN
L-ETN

8.745
8.471
8.377
8.474
8.412

29.712
30.275
30.146
30.103
29.910

0.164
0.176
0.194
0.183
0.193

0.397
0.436
0.442
0.410
0.417

79.0
71.5
67.1
69.0
66.4

87.1
80.3
74.9
78.1
74.4

86.3
81.9
81.3
78.3
76.1

TABLE 4. Listening test results in CER and MOS of intelligibility (left), AB test results (middle), and assessment 
scores of MOSA-Net+ (right).

Intelligibility AB test MOSA-Net+

Model CER (%)  MOS of Int.  Prefer (%)  Prefer (%)  Quality  Intelligibility 

pEL
CDVAE

VTN
Ours

95.0
99.6
88.2
79.8

1.075
1.181
1.996
2.130

—
2.08

89.58
—

—
—

10.00
26.67

1.679
2.228
3.259
3.382

0.455
0.668
0.947
0.960

NL 6.8 4.850 Nearly 8.33 63.33 NL 4.280 0.993
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error rate of 99.6%, even higher than that of pEL 
speech. In comparison, our model shows better per-
formance than the baseline VTN-based model, with 
a relative error reduction of 9.5% (from 88.2% to 
79.8%). As for intelligibility scores, pEL speech had 
the lowest score, as expected. CDVAE was unable 
to significantly improve the intelligibility score com-
pared to pEL speech, possibly due to the noise 
introduced during its conversion process. The other 
two seq2seq ELVC models performed significantly 
better than CDVAE, with our model achieving the 
highest MOS score among all tested models.

We conducted two sets of AB tests: the first 
pairing CDVAE with the VTN-based model, and 
the second pairing the VTN-based model with our 
best model. Fifteen participants took part in the 
AB test. The results are shown in the middle part 
of Table 4. In the first set of AB tests, we observed 
that the VTN-based model showed a clear pref-
erence over CDVAE, with a difference of 87.5%. 
In the second set of AB tests, our best model 
outperformed the VTN-based model by 16.67%, 
although 63.33% of the ratings deemed the two 
indistinguishable. The results show that our model 
outperforms the VTN-based model, which in turn 
outperforms CDVAE. The results also show that, 
in addition to intelligibility, our model improves 
the overall listening experience.

The quality and intelligibility assessment results 
of MOSA-Net+ on the speech data used for sub-
jective evaluation are shown in the right part of 
Table 4. The automated quality assessment results 
of MOSA-Net+ and the AB test show a consistent 
trend that our model outperforms the VTN-based 
model, which in turn outperforms CDVAE. Further-
more, the intelligibility scores of MOSA-Net+ align 
with the trend of CER and MOS of intelligibility in 
the left part of Table 4, with our model outperform-
ing the VTN-based model, which in turn outper-
forms CDVAE. However, the intelligibility scores of 
the VTN-based model and our best model are very 
close to the intelligibility score of NL speech, which 
is different from the human evaluation results. The 
reason for this difference may be that the training 
data of MOSA-Net+ does not include good-quality 
but difficult-to-understand speech like converted EL 
speech. Although MOSANet+ may not precisely 
predict absolute subjective evaluation scores and 
ASR performance, its trends in relative improve-
ment remain consistent. This consistency makes it 
a valuable reference, potentially reducing the need 
for costly subjective evaluations.

Spectrogram Analysis
To qualitatively compare the conversion results, Fig-
ure 2 shows the spectrograms of EL speech, speech 
converted by CDVAE, VTN, and our best system, 
and NL speech. From the first row, we can notice 
that the horizontal pattern (the mechanical noise of 
the EL device) fills the EL speech. Compared with 
NL speech, EL speech loses detailed speech struc-
ture, and is much longer than NL speech. Com-
pared to CDVAE-converted speech, the results from 
both seq2seq-based models have more detailed 
patterns in high-frequency bins and are closer in 
duration to NL speech. Comparing VTN-converted 
speech with speech converted by our best system 
utilizing the proposed techniques, our converted 
speech exhibits very similar detailed patterns to NL 
speech, highlighting its superior performance.

Discussion
While the proposed ELVC model significantly 
improves the intelligibility and quality of Manda-
rin EL speech, there is still a large gap between 
the current results and the acceptable levels for 
humans and ASR models. The challenge of main-
taining recording quality in uncontrolled patient 
environments remains a significant issue. Since 
each patient’s pathology is different, evaluation on 
a large number of patients is absolutely necessary. 
Although it is difficult to obtain authorization to use 
patient EL speech, we are working hard to collect 
more data through doctors. Due to lack of data, 
we are currently unable to verify the generaliza-
tion of the model across languages. However, con-
sidering that the original VTN model architecture 
was applied to the English speaker VC task, and we 
applied it to the Mandarin ELVC task, there should 
be no difficulty in applying it to other languages. 
Exploring the characteristics of different patients 
and languages is a good experimental direction, 
but also presents significant challenges.

While we are currently focused on improving 
ELVC performance, i.e., improving the quality 
and intelligibility of EL speech, our ultimate goal 
is indeed to provide this service to laryngecto-
my patients via smartphones or other customized 
edge devices. Our ELVC system processes speech 
on an utterance-by-utterance basis, processing 
short utterances or segmenting long utterances 
into multiple shorter ones. Although completely 
real-time processing is not achieved, the delay 
is acceptable and does not significantly affect 
the user experience. The model has approxi-
mately 30 million parameters and currently runs 
on a standard GPU server. Since the large pre-
trained model does not participate in the infer-
ence process, the model can be deployed on 
high-performance IoT devices. With continued 

FIGURE 2. Spectrograms of EL speech, speech 
converted by CDVAE, VTN, and our best system, 
and NL speech.
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Fig. 2. Spectrograms of EL speech, speech converted by CDVAE, VTN, and
our best system, and NL speech.

speech with speech converted by our best system utilizing
the proposed techniques, our converted speech exhibits very
similar detailed patterns to NL speech, highlighting its superior
performance.

V. DISCUSSION

While the proposed ELVC model significantly improves the
intelligibility and quality of Mandarin EL speech, there is still
a large gap between the current results and the acceptable
levels for humans and ASR models. The challenge of main-
taining recording quality in uncontrolled patient environments
remains a significant issue. Since each patient’s pathology is
different, evaluation on a large number of patients is absolutely
necessary. Although it is difficult to obtain authorization to use
patient EL speech, we are working hard to collect more data
through doctors. Due to lack of data, we are currently unable
to verify the generalization of the model across languages.
However, considering that the original VTN model architecture
was applied to the English speaker VC task, and we applied
it to the Mandarin ELVC task, there should be no difficulty in
applying it to other languages. Exploring the characteristics
of different patients and languages is a good experimental
direction, but also presents significant challenges.

While we are currently focused on improving ELVC per-
formance, i.e., improving the quality and intelligibility of EL

speech, our ultimate goal is indeed to provide this service to
laryngectomy patients via smartphones or other customized
edge devices. Our ELVC system processes speech on an
utterance-by-utterance basis, processing short utterances or
segmenting long utterances into multiple shorter ones. Al-
though completely real-time processing is not achieved, the
delay is acceptable and does not significantly affect the user
experience. The model has approximately 30 million param-
eters and currently runs on a standard GPU server. Since the
large pre-trained model does not participate in the inference
process, the model can be deployed on high-performance IoT
devices. With continued advancements in chip technology, we
anticipate that the proposed model can be capable of running
on devices with more limited computing power and smaller
memory in the future. It is also worth mentioning that with the
popularization of network technology, many communications
have gradually turned to video conferencing. Our system can
run smoothly on ordinary computers, further improving the
communication experience of electrolarynx users in video
conferences and making conversations smoother.

VI. CONCLUSIONS

In this paper, we have introduced three methods to im-
prove the existing seq2seq ELVC framework. Most previ-
ous work has evaluated simulated EL speech produced by
healthy speakers using electrolarynxes, but our goal was to
enhance EL speech of real patients. We performed additional
pretraining using a simulated EL speech dataset to improve
ELVC modeling and close the gap between patient EL speech
and natural speech. Additionally, we augmented the patient
EL training data using a simple but effective speech rate-
based data augmentation method. We also incorporated an
additional speech encoder loss into ELVC model training,
thereby alleviating the problem of incomplete and missing
phonemes of seq2seq ELVC. Through objective and subjective
evaluations, we have confirmed that these methods not only
improve performance independently but also complement each
other to create synergistic effects.

Joint training that combines audio and visual information
is a valuable direction for ELVC, especially since the per-
formance of audio-only models is currently unsatisfactory.
Future work will consider combining visual information, such
as facial expressions and lip movements, with audio to assist
in speech signal processing. The application scenario is to
allow patients to use the electrolarynx to give speeches or
communicate verbally in video conferences. In addition to
using more simulated EL speech to pretrain the ELVC model
and applying more effective data augmentation to augment
patient EL training data, employing robust representations
of larger-scale pretrained speech models (trained via self-
supervised learning or supervised learning) is a promising
direction to improve the quality and intelligibility of converted
speech.
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advancements in chip technology, we anticipate 
that the proposed model can be capable of run-
ning on devices with more limited computing 
power and smaller memory in the future. It is also 
worth mentioning that with the popularization 
of network technology, many communications 
have gradually turned to video conferencing. Our 
system can run smoothly on ordinary computers, 
further improving the communication experience 
of electrolarynx users in video conferences and 
making conversations smoother.

Conclusions
In this article, we have introduced three methods 
to improve the existing seq2seq ELVC framework. 
Most previous work has evaluated simulated EL 
speech produced by healthy speakers using elec-
trolarynxes, but our goal was to enhance EL 
speech of real patients. We performed addition-
al pretraining using a simulated EL speech data-
set to improve ELVC modeling and close the gap 
between patient EL speech and natural speech. 
Additionally, we augmented the patient EL training 
data using a simple but effective speech rate-based 
data augmentation method. We also incorporated 
an additional speech encoder loss into ELVC model 
training, thereby alleviating the problem of incom-
plete and missing phonemes of seq2seq ELVC. 
Through objective and subjective evaluations, 
we have confirmed that these methods not only 
improve performance independently but also com-
plement each other to create synergistic effects.

Joint training that combines audio and visual 
information is a valuable direction for ELVC, espe-
cially since the performance of audio-only models 
is currently unsatisfactory. Future work will consider 
combining visual information, such as facial expres-
sions and lip movements, with audio to assist in 
speech signal processing. The application scenar-
io is to allow patients to use the electrolarynx to 
give speeches or communicate verbally in video 
conferences. In addition to using more simulated 
EL speech to pretrain the ELVC model and apply-
ing more effective data augmentation to augment 
patient EL training data, employing robust repre-
sentations of larger-scale pretrained speech models 
(trained via self-supervised learning or supervised 
learning) is a promising direction to improve the 
quality and intelligibility of converted speech.
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